Math 299

Ch 3.4: Proof by cases

Let a statement of the form

 $(P_1 \text{ or } P_2 \text{ or } \cdots \text{ or } P_n) \implies Q$

be given, where P_1, P_2, \cdots, P_n are cases.

Show that it is equivalent to the following:

 $(P_1 \implies Q)$ and $(P_2 \implies Q)$ and \cdots and $(P_n \implies Q)$.

Thus, we need to prove all the clauses are true.

Example: Prove that if $n \in \mathbb{Z}$, then $n^3 - n$ is even.

Example: Prove " $n^2 \ge n$ for any integer n".

Proof:

1. How many cases do we need to consider?

2. Explicitly state what we want to prove.

3. If we can prove that all cases are true, we can conclude that $n^2 \ge n$ for all integers n.

4. Write the final polished form of your proof.

Exercises

1. For $n \in \mathbb{Z}$, prove that $9n^2 + 3n - 2$ is even.

2. For any integer n, $n^3 + n$ is an even integer.

3. For $x, y \in \mathbb{R}$, |xy| = |x||y|.

4. Prove that for all $x \in \mathbb{R}$, $-5 \le |x+2| - |x-3| \le 5$.

5. Prove that if x is a real number such that $\frac{x^2 - 1}{x + 2} > 0$, then x > 1 or -2 < x < -1.

More exercise problems for Chapter 3

- 1. Show that if n is an even integer then either n = 4k or n = 4k + 2 for some integer k. (Hint: For n to be even means that n = 2m for some integer m. Consider two possibilities for m.)
- 2. Prove the following statements by stating and proving the contrapositive
 - (a) If n^2 is an odd integer, then n is an odd integer.
 - (b) If n^2 is divisible by 4, then n is even.
 - (c) Let a and b be nonnegative real numbers. If $a^2 < b^2$, then a < b. (Hint: Use the following property of the real numbers: if a < b and c > 0, then ac < bc.)
 - (d) Let a and b be nonnegative real numbers and let $n \in \mathbb{N}$. If $a^n < b^n$, then a < b.
- 3. Use a proof by cases to prove that if $n = m^2$ for some integer m, then n = 4k or n = 4k + 1 for some integer k.