Ch 3.4: Proof by cases

Let a statement of the form

$$
\left(P_{1} \text { or } P_{2} \text { or } \cdots \text { or } P_{n}\right) \Longrightarrow Q
$$

be given, where $P_{1}, P_{2}, \cdots, P_{n}$ are cases.
Show that it is equivalent to the following:

$$
\left(P_{1} \Longrightarrow Q\right) \text { and }\left(P_{2} \Longrightarrow Q\right) \text { and } \cdots \text { and }\left(P_{n} \Longrightarrow Q\right)
$$

Thus, we need to prove all the clauses are true.

Example: Prove that if $n \in \mathbb{Z}$, then $n^{3}-n$ is even.

Example: Prove " n 2 $\geq n$ for any integer n ".
Proof:

1. How many cases do we need to consider?
2. Explicitly state what we want to prove.
3. If we can prove that all cases are true, we can conclude that $n^{2} \geq n$ for all integers n.
4. Write the final polished form of your proof.

Exercises

1. For $n \in \mathbb{Z}$, prove that $9 n^{2}+3 n-2$ is even.
2. For any integer $n, n^{3}+n$ is an even integer.
3. For $x, y \in \mathbb{R},|x y|=|x||y|$.
4. Prove that for all $x \in \mathbb{R},-5 \leq|x+2|-|x-3| \leq 5$.
5. Prove that if x is a real number such that $\frac{x^{2}-1}{x+2}>0$, then $x>1$ or $-2<x<-1$.

More exercise problems for Chapter 3

1. Show that if n is an even integer then either $n=4 k$ or $n=4 k+2$ for some integer k. (Hint: For n to be even means that $n=2 m$ for some integer m. Consider two possibilities for m.)
2. Prove the following statements by stating and proving the contrapositive
(a) If n^{2} is an odd integer, then n is an odd integer.
(b) If n^{2} is divisible by 4 , then n is even.
(c) Let a and b be nonnegative real numbers. If $a^{2}<b^{2}$, then $a<b$. (Hint: Use the following property of the real numbers: if $a<b$ and $c>0$, then $a c<b c$.)
(d) Let a and b be nonnegative real numbers and let $n \in \mathbb{N}$. If $a^{n}<b^{n}$, then $a<b$.
3. Use a proof by cases to prove that if $n=m^{2}$ for some integer m, then $n=4 k$ or $n=4 k+1$ for some integer k.
